
Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary Information 

InnoPhase IoT, Inc. | 2870 Zanker Road, Suite 200, San Jose, CA 95134 | https://innophaseiot.com/ | sales@innophaseiot.com 

 

 

 

 

 

 

 

Talaria TWO™ (INP2045) 

Ultra-Low Power Multi-Protocol Wireless Platform SoC 

IEEE 802.11 b/g/n, BLE 5.0  

 

 

 

 

Application Note 
Alexa Ready Application with AWS IoT Embedded C Device SDK 

Release: 11-11-2022 

 

 

 

 

 

https://innophaseiot.com/
mailto:sales@innophaseiot.com


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 2 

 

Revision History 

 

Version Date Comments 

1.0 18-11-2020 First release. 

2.0 02-02-2022 Updated for SDK 2.4 release. 

Updated application note with details regarding the option to provision AP using 

mobile application.  

3.0 11-11-2022 Updated to include the updated BLE provisioning mobile application.  

 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 3 

 

Contents 

Figures .............................................................................................................................................................. 5 

Tables ............................................................................................................................................................... 5 

Terms & Definitions ........................................................................................................................................... 6 

Introduction ........................................................................................................................................................ 7 

AWS IoT Device Shadow Service ...................................................................................................................... 7 

AWS IoT Embedded C Device SDK 3.0.1 Features ........................................................................................... 8 

MQTT Connection .......................................................................................................................................... 9 

Thing Shadow ................................................................................................................................................ 9 

AWS IoT Core Device Shadow Service Protocol ............................................................................................. 10 

Initialization of the device on first connection to AWS IoT Core .................................................................... 11 

Processing messages while the device is connected to AWS IoT Core ....................................................... 12 

Processing messages when the device is reconnected to AWS IoT Core .................................................... 13 

AWS IoT Embedded C Device SDK - Shadow Service APIs and Structures ................................................... 14 

aws_iot_shadow_init() .................................................................................................................................. 14 

aws_iot_shadow_connect() .......................................................................................................................... 14 

aws_iot_shadow_yield() ............................................................................................................................... 14 

(*fpActionCallback_t)() ................................................................................................................................. 15 

aws_iot_shadow_update() ........................................................................................................................... 16 

aws_iot_shadow_get() ................................................................................................................................. 17 

aws_iot_shadow_delete() ............................................................................................................................ 17 

aws_iot_shadow_register_delta() ................................................................................................................. 17 

aws_iot_shadow_reset_last_received_version() .......................................................................................... 18 

aws_iot_shadow_get_last_received_version() ............................................................................................. 18 

aws_iot_shadow_enable_discard_old_delta_msgs() ................................................................................... 18 

aws_iot_shadow_disable_discard_old_delta_msgs() ................................................................................... 18 

aws_iot_shadow_set_autoreconnect_status() .............................................................................................. 19 

aws_iot_shadow_disconnect() ..................................................................................................................... 19 

aws_iot_shadow_free() ................................................................................................................................ 19 

aws_iot_shadow_init_json_document() ........................................................................................................ 20 

structure jsonStruct_t ................................................................................................................................... 20 

aws_iot_shadow_add_reported() ................................................................................................................. 22 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 4 

 

aws_iot_shadow_add_desired() ................................................................................................................... 22 

aws_iot_finalize_json_document() ............................................................................................................... 23 

aws_iot_fill_with_client_token() .................................................................................................................... 23 

Auto Reconnect Feature .................................................................................................................................. 24 

About Alexa Smart Home Skill ......................................................................................................................... 25 

Setting up a Talaria TWO InnoSwitch Demo .................................................................................................... 26 

Prerequisite .................................................................................................................................................. 26 

Enable InnoPhase Smart Home Demo Alexa Skill ....................................................................................... 26 

Method 1 - Enabling Via Browser ............................................................................................................. 26 

Method 2 - Enabling Via Amazon Alexa App ............................................................................................ 27 

Linking the Alexa account to the Skill ........................................................................................................... 28 

Request for AWS IoT Thing creation & Certs created for the Thing .............................................................. 30 

Programming Applications ............................................................................................................................... 31 

Programming Talaria TWO board with certificates ....................................................................................... 31 

Show File System Contents ...................................................................................................................... 31 

Writing Files into File System ................................................................................................................... 32 

Programming Talaria TWO board with ELF .................................................................................................. 33 

Programming Talaria TWO board with innoswitch.elf ............................................................................... 33 

Programming Talaria TWO board with innoswitch_ble_provisioning.elf .................................................... 38 

Jumper Setting in Talaria TWO EVB ............................................................................................................ 54 

Interacting the Talaria TWO EVB with Alexa ................................................................................................ 54 

Support ............................................................................................................................................................ 59 

Disclaimers ...................................................................................................................................................... 60 

 

 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 5 

 

Figures 

 

Figure 1: SDK architecture & modules .................................................................................................................... 8 

Figure 2: Locating and enabling skill via amazon.com in browser -- 1 ................................................................. 26 

Figure 3: Locating and enabling skill via amazon.com in browser -- 2 ................................................................. 27 

Figure 4: Locating and enabling skill via Alexa phone app ................................................................................... 27 

Figure 5: Amazon account – credentials asked for account linking ..................................................................... 28 

Figure 6: Permissions asked to access profile for Account Linking ...................................................................... 29 

Figure 7: Amazon Alexa Account Successfully linked to the InnoPhase Smart Home Demo Alexa Skill .............. 30 

Figure 8: Download Tool - Show File System Contents ........................................................................................ 31 

Figure 9: Write certificates to Talaria TWO .......................................................................................................... 32 

Figure 10: Writing part.json .................................................................................................................................. 38 

Figure 11: Android - Scanning for Talaria TWO BLE Server for Wi-Fi Provisioning .............................................. 39 

Figure 12: iOS - Scanning for Talaria TWO BLE Server for Wi-Fi Provisioning ...................................................... 40 

Figure 13: Android - Available Wi-Fi networks as scanned by Android Phone .................................................... 41 

Figure 14: iOS - Available Wi-Fi networks as scanned by Android Phone ............................................................ 42 

Figure 15: Android - Providing the passphrase ..................................................................................................... 43 

Figure 16: iOS - Providing the passphrase ............................................................................................................ 44 

Figure 17: Android - Connecting successful .......................................................................................................... 45 

Figure 18: iOS - Connecting successful ................................................................................................................. 46 

Figure 19: Android - Error in connection .............................................................................................................. 47 

Figure 20: iOS - Error in connection ...................................................................................................................... 48 

Figure 21: Android - Connection successful ......................................................................................................... 49 

Figure 22: iOS - Connection successful ................................................................................................................. 50 

Figure 23: Devices – Switches -- InnoSwitch ......................................................................................................... 54 

Figure 24: InnoSwitch power on-off control ......................................................................................................... 55 

 

Tables 

 

Table 1: Topic prefix used by each shadow type .................................................................................................. 11 

Table 2: ShadowTopicPrefix .................................................................................................................................. 12 

Table 3: Indication................................................................................................................................................. 13 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 6 

 

Terms & Definitions  

 

API  Application Programming Interface 

AWS  Amazon Web Services 

ELF  Executable and Linkable Format 

EVB  Evaluation Board  

GPIO  General Purpose Input/Output 

HTTP  Hypertext Transfer Protocol 

LWA  Login With Amazon 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 7 

 

Introduction  

Alexa Ready application on Talaria TWO uses AWS IoT Embedded C Device SDK available on Talaria TWO to 

interact with the Device Shadow Service on AWS IoT Core. 

Device makers can have their own Alexa Skill implementation hosted on their cloud to bridge the Alexa Voice 

Service (AVS) and device maker’s AWS IoT Core Cloud Service. Post this, AWS IoT Embedded C Device SDK 

available on Talaria TWO can be used to make their smart home device endpoints which can be controlled using 

Alexa. 

This Application Note describes the APIs used to achieve this on Talaria TWO and guides the reader to a demo 

of Alexa Ready application using InnoPhase Smart Home Demo Alexa Skill to control a device endpoint running 

on Talaria TWO EVB and behaving as an Alexa Smart Home Switch. 

This is achieved by Alexa Voice Service (AVS) Cloud interacting with the Alexa Skill hosted at InnoPhase Inc.’s 

AWS Cloud which eventually controls the Talaria TWO EVB represented as an IoT device endpoint in InnoPhase 

Inc.’s AWS IoT Core Cloud. 

 

AWS IoT Device Shadow Service  

Device Shadow is the always-available device state in the AWS cloud. A device's shadow is a JSON document 

that is used to store and retrieve current state information for a device. The AWS IoT Device Shadow service 

adds and maintains shadows to AWS IoT Thing objects. It is also known as Thing Shadow. 

Shadows can make a device’s state available to apps and other cloud services whether the device is connected 

to AWS IoT or not. 

To get and set the state of a device from AWS IoT Core, the Device Shadow service can be used over MQTT 

and HTTP. Applications and web services generally use HTTP to interact with Device Shadow and Embedded 

devices often use MQTT to interact with Device Shadow. 

Common use cases for Device Shadow include backing up device state, or sending commands to devices and 

as a reliable data store for devices, applications, and other cloud services to share data. While devices, 

applications, and other cloud services are connected to AWS IoT Core, they can access and control the current 

state of a device through its shadows. Device Shadow Service enables devices, applications, and other cloud 

services to connect and disconnect without losing a device's state. 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 8 

 

AWS IoT Embedded C Device SDK 3.0.1 Features 

AWS IoT Embedded C Device SDK version 3.0.1 is available with Talaria TWO SDK which allows embedded 

applications to securely connect to the AWS IoT Core platform. It simplifies access to the PUB/SUB functionality 

of the AWS IoT Core broker via MQTT and provides convenient APIs for handling MQTT topics reserved for 

Device Shadow Service to interact with Thing Shadows. 

AWS IoT Embedded C Device SDK was specifically designed for resource constrained devices (running on 

micro-controllers and RTOS), and follows a layered architecture as shown in Figure 1. 

 
Figure 1: SDK architecture & modules 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 9 

 

MQTT Connection  

AWS IoT Embedded C Device SDK provides functionality to create and maintain a mutually authenticated TLS 

connection over which it runs MQTT. This connection is used for any further publish operations and allow for 

subscribing to MQTT topics which will call a configurable callback function when these topics are received. 

 

Thing Shadow 

AWS IoT Embedded C Device SDK implements the specific protocol for Thing Shadows to retrieve, update and 

delete Thing Shadows. This protocol is implemented to ensure correct versioning and support for client tokens. 

 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 10 

 

AWS IoT Core Device Shadow Service Protocol 

This section describes device communications with Shadows using Shadow Service Protocol. 

It internally uses MQTT messages which is the preferred method for embedded devices to communicate with 

the AWS IoT Device Shadow service. 

It abstracts the necessary MQTT topic subscriptions by automatically subscribing to and unsubscribing from the 

reserved topics for Device Shadow Service as needed for each API call. Inbound state change requests are 

automatically signaled via a configurable call back. 

Shadow communications emulate a request/response model using the publish/subscribe communication of 

MQTT. As MQTT is used, the shadow needs to connect and disconnect. 

There are three actions a device can perform on the shadow - Get, Update and Delete. Every shadow action 

consists of a request topic, a successful response topic (accepted), and an error response topic (rejected). On 

performing any action, the acknowledgment will be received in either accepted topic or rejected topic. 

On performing any action, the acknowledgment will be received in either accepted or rejected.  

For Example: If there is a need to perform a GET on a Thing Shadow the following messages will be sent and 

received: 

1. A MQTT Publish on the topic - $aws/things/{thingName}/shadow/get 

2. Subscribe to MQTT topics - $aws/things/{thingName}/shadow/get/accepted and 

$aws/things/{thingName}/shadow/get/rejected. 

If the request was successful, the things json document is received in the accepted topic. 

Similarly, for another example, when an Update is performed to a Thing Shadow, one of the two things can 

happen and can be acknowledged. 

The update action could be accepted by the Thing Shadow and the version of the JSON document will be 

updated. The update request could also be rejected. 

This can be known by subscribing to the two topics: 

$aws/things/{thingName}/shadow/update/accepted and 

$aws/things/{thingName}/shadow/update/rejected. 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 11 

 

Initialization of the device on first connection to AWS IoT Core 

After a device registers with AWS IoT, it subscribes to these MQTT messages for the shadows that it supports. 

The ShadowTopicPrefix can refer to either a named or an unnamed shadow, as described in Table 1. 

Shadows can be named or unnamed (classic). The topics used by each differ only in the topic prefix. Table 1 

shows the topic prefix used by each shadow type. 

ShadowTopicPrefix value Shadow type 

$aws/things/thingName/shadow Unnamed (classic) shadow 

$aws/things/thingName/shadow/name/shadowName Named shadow 
Table 1: Topic prefix used by each shadow type 

 

Topic Meaning Action a device should take when this 

topic is received 

ShadowTopicPrefix/delete/a

ccepted 

The delete request was accepted 

and AWS IoT deleted the shadow. 

The actions necessary to accommodate 

the deleted shadow, such as stop 

publishing updates. 

ShadowTopicPrefix/delete/r

ejected 

The delete request was rejected by 

AWS IoT and the shadow was not 

deleted. The message body contains 

the error information. 

Respond to the error message in the 

message body. 

ShadowTopicPrefix/get/acc

epted 

The get request was accepted by 

AWS IoT, and the message body 

contains the current shadow 

document. 

The actions necessary to process the 

state document in the message body. 

ShadowTopicPrefix/get/reje

cted 

The get request was rejected by 

AWS IoT, and the message body 

contains the error information. 

Respond to the error message in the 

message body. 

ShadowTopicPrefix/update/

accepted 

The update request was accepted by 

AWS IoT, and the message body 

contains the current shadow 

document. 

Confirm the updated data in the 

message body matches the device 

state. 

ShadowTopicPrefix/update/

rejected 

The update request was rejected by 

AWS IoT, and the message body 

contains the error information. 

Respond to the error message in the 

message body. 

ShadowTopicPrefix/update/

delta 

The shadow document was updated 

by a request to AWS IoT, and the 

message body contains the changes 

requested. 

Update the device's state to match the 

desired state in the message body. 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 12 

 

ShadowTopicPrefix/update/

documents 

An update to the shadow was 

recently completed, and the message 

body contains the current shadow 

document. 

Confirm the updated state in the 

message body matches the device's 

state. 

Table 2: ShadowTopicPrefix 

After subscribing to the messages in the preceding table for each shadow, the device tests to see if the shadows 

that it supports have already been created by publishing a /get topic to each shadow. If a /get/accepted message 

is received, the message body contains the shadow document, which the device uses to initialize its state. If 

a /get/rejected message is received, the shadow is created by publishing an /update message with the current 

device state. 

 

Processing messages while the device is connected to AWS IoT Core 

There are three key value pairs of device states in shadow JSON document which a device needs to be 

concerned about. 

1. Reported 

2. Desired 

3. Delta  

All these keys are under the state. 

If the device state is changed using a physical interaction, then Publishing an /update message with 

a desired message body that has the device’s physically changed state is needed. When it is done, other entities 

connected with Device Shadow Service get a delta callback notifying them with the change. 

The device always receives a delta message if there is any difference between the desired and the reported 

section of the device and if the device has subscribed for the delta topic using the 

API aws_iot_shadow_register_delta(). 

While a device is connected to AWS IoT, it can receive /update/delta messages if the desired state is changed 

by another party, and should keep the device state matched to the changes in its shadows by: 

1. Reading all /update/delta messages received and synchronizing the device state to match. 

2. Publishing an /update message with a reported message body that has the device’s current state, 

whenever the device's state changes. 

 

While a device is connected, it publishes these messages when indicated. 

Indication Topic Payload 

The device's state has changed. ShadowTopicPrefix/update A shadow document with 

the reported property. 

The device's desired state has changed 

(physical interaction). 

ShadowTopicPrefix/update A shadow document with 

the desired property. 

http://aws-iot-device-sdk-embedded-c-docs.s3-website-us-east-1.amazonaws.com/aws__iot__shadow__interface_8h.html#a2b6000e1a7590cff3b6e66601b0c4934


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 13 

 

The device might not be synchronized with 

the shadow. 

ShadowTopicPrefix/get (empty) 

An action on the device indicates that a 

shadow will no longer be supported by the 

device, such as when the device is being 

remove or replaced 

ShadowTopicPrefix/delete (empty) 

Table 3: Indication 

 

Processing messages when the device is reconnected to AWS IoT Core 

When a device with one or more shadows connects to AWS IoT, it should synchronize its state with that of all 

the shadows that it supports by: 

1. Reading all /update/delta messages received and synchronizing the device state to match. 

2. Publishing an /update message with a reported message body that has the device’s current state. 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 14 

 

AWS IoT Embedded C Device SDK - Shadow Service APIs and Structures 

APIs available in Talaria TWO AWS IoT Device SDK to effectively use the AWS IoT Device Shadow Service are 

as follows: 

 

aws_iot_shadow_init() 

This API takes care of initializing the IoT client and the internal book-keeping data structures of Thing Shadow 

before use. 

Parameter pClient is a new MQTT Client to be used as the protocol layer. Will be initialized with pParams. 

Returns an IoT Error Type defining successful/failed Initialization.  
IoT_Error_t aws_iot_shadow_init(AWS_IoT_Client *pClient, ShadowInitParameters_t 

*pParams); 

 

aws_iot_shadow_connect() 

This API does the TLSv1.2 handshake and establishes the MQTT connection to connect to the AWS IoT Thing 

Shadow service over MQTT. 

Parameter pClient is MQTT Client used as the protocol layer, pParams holds Shadow Connection parameters. 

Returns an IoT Error Type defining successful/failed Connection. 
IoT_Error_t aws_iot_shadow_connect(AWS_IoT_Client *pClient, ShadowConnectParameters_t 

*pParams); 

 

aws_iot_shadow_yield() 

This API is called to yield the current thread to the underlying MQTT client and Shadow. It ensures the expired 

requests of Shadow actions are cleared and Timeout callback is executed. 

It also ensures that the MQTT client gets the time to manage PING requests to monitor the health of the TCP 

connection as well as periodically check the socket receive buffer for subscribe messages. 

This function could be used in a separate thread waiting for the incoming messages, ensuring the connection is 

kept alive with the AWS Service. 

All callbacks used in the SDK will be executed in the context of this function. 

Parameter pClient is MQTT Client used as the protocol layer, timeout is the maximum time in milliseconds the 

yield function will wait for a message and/or read the messages from the TLS buffer. 

Returns an IoT Error Type defining successful/failed Yield. 
IoT_Error_t aws_iot_shadow_yield(AWS_IoT_Client *pClient, uint32_t timeout); 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 15 

 

(*fpActionCallback_t)() 

This is a Function Pointer typedef used as the callback for the actions Update, Get and Delete. 

This function will be called from the context of thread which called aws_iot_shadow_yield(). 

Parameter pThingName is Thing Name of the response received, action tells that the response is of which action 

(Update, Get or Delete), status informs if the action was Accepted/Rejected or Timed out, 

pReceivedJsonDocument is received JSON document when Accepted, pContextData is the void* data 

passed in during the action call (Update, Get or Delete). 
typedef void (*fpActionCallback_t)(const char *pThingName, ShadowActions_t action, 

Shadow_Ack_Status_t status, const char *pReceivedJsonDocument, void *pContextData); 

 

/** 

 * @brief Thing Shadow Acknowledgment enum 

*/ 

typedef enum { 

 SHADOW_ACK_TIMEOUT, SHADOW_ACK_REJECTED, SHADOW_ACK_ACCEPTED 

} Shadow_Ack_Status_t; 

 

/** 

 * @brief Thing Shadow Action type enum 

*/ 

typedef enum { 

 SHADOW_GET, SHADOW_UPDATE, SHADOW_DELETE 

} ShadowActions_t; 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 16 

 

aws_iot_shadow_update() 

This API is the used to perform an Update action to a Thing Name's Shadow. 

Update is one of the most frequently used functionalities by a device. In most cases the device may be just 

reporting few params to update the thing shadow in the cloud. 

If no callback or if the JSON document does not have a client token, then the Update Action will just publish the 

update and not track it.  

The following steps are performed on using this function: 

1. Subscribe to Shadow topics - $aws/things/{thingName}/shadow/update/accepted and 

$aws/things/{thingName}/shadow/update/rejected 

2. Wait for two seconds for the subscription to take effect 

3. Publish on the update topic - $aws/things/{thingName}/shadow/update 

4. The response will be handled in the aws_iot_shadow_yield() function. In case of timeout or if no 

response is received, the subscription to shadow response topics is un-subscribed. 

 

On the contrary, if the persistent subscription is set to TRUE then the un-subscribe will not be done. The topics 

will always be listened to. 

Parameter pClient is MQTT Client used as the protocol layer, pThingName is the Thing Name of the shadow 

that needs to be Updated, pJsonString contains a JSON document which update action expects. The JSON 

String should be a null terminated string. This JSON document should adhere to the AWS IoT Thing Shadow 

specification. To help in the process of creating this JSON document- SDK provides JSON handling APIs 

explained later in this app note. 

Parameter callback is the callback that will be used to inform the caller of the response from the AWS IoT Shadow 

service. Callback could be set to NULL if response is not important. 

Parameter pContextData is an extra parameter that could be passed along with the callback. Should be set 

to NULL if not used. 

Parameter timeout_seconds is the time the SDK will wait for the response on either accepted or rejected topic 

before declaring timeout on the action. 

Parameter isPersistentSubscribe should be set to true to avoid repeated subscription and un-subscription 

if every time a device updates the same shadow, as mentioned above. If the update action on the Thing Name 

is a one-off update, then isPersistentSubscribe should be set to false. 

Returns an IoT Error Type defining successful/failed Update action. 
IoT_Error_t aws_iot_shadow_update(AWS_IoT_Client *pClient, const char *pThingName, char 

*pJsonString, fpActionCallback_t callback, void *pContextData, uint8_t timeout_seconds, 

bool isPersistentSubscribe); 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 17 

 

aws_iot_shadow_get() 

This API is the used to perform a Get action to a Thing Name's Shadow. 

This is usually used to get the config of a device at boot up. It is like the Update API internally, except it does not 

take a JSON document as the input. In case of success, JSON document is received over the accepted topic.  

All the other parameters are same as explained in API aws_iot_shadow_update(). 

Returns an IoT Error Type defining successful/failed Get action. 
IoT_Error_t aws_iot_shadow_get(AWS_IoT_Client *pClient, const char *pThingName, 

fpActionCallback_t callback, void *pContextData, uint8_t timeout_seconds, bool 

isPersistentSubscribe); 

 

aws_iot_shadow_delete() 

This API is the used to perform a Delete action to a Thing Name's Shadow. 

It is generally the responsibility of the accompanying web service / app to do the delete so it is not a very common 

use case for the device. 

It is like the Update function internally, except it does not take a JSON document as the input. The Thing Shadow 

referred by the Thing Name will be deleted.  

All the other parameters are same as explained in API aws_iot_shadow_update(). 

Returns an IoT Error Type defining successful/failed Delete action. 
IoT_Error_t aws_iot_shadow_delete(AWS_IoT_Client *pClient, const char *pThingName, 

fpActionCallback_t callback, void *pContextData, uint8_t timeout_seconds, bool 

isPersistentSubscriptions); 

 

aws_iot_shadow_register_delta() 

This API is the used to listen on the delta topic of #AWS_IOT_MY_THING_NAME mentioned in the 

aws_iot_config.h file. Any time a delta is published, the JSON document will be delivered to the pStruct-

>cb. If the parsing done by the SDK is not needed, then use the jsonStruct_t key set to "state". 

Parameter pClient is MQTT Client used as the protocol layer and pStruct is the struct used to parse JSON 

value. To help in the process of parsing this JSON document- SDK provides JSON handling APIs explained later 

in this app note. 

Returns an IoT Error Type defining successful/failed delta registration. 
IoT_Error_t aws_iot_shadow_register_delta(AWS_IoT_Client *pClient, jsonStruct_t 

*pStruct); 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 18 

 

aws_iot_shadow_reset_last_received_version() 

This API is the used Reset the last received version number to zero and is useful when the Thing Shadow is 

deleted and the local version needs to be rest. 
void aws_iot_shadow_reset_last_received_version(void); 

 

aws_iot_shadow_get_last_received_version() 

This API is the used get the last received version number for a JSON document. 

Version of a document is received with every accepted/rejected and the SDK keeps track of the last received 

version of the JSON document of #AWS_IOT_MY_THING_NAME shadow. 

One exception to this version tracking is that the SDK ignores the version from update/accepted topic. Rest of 

the responses will be scanned to update the version number. 

Reason behind this is, accepting version change for update/accepted may cause version conflicts for delta 

message if the update message is received before the delta. 

Returns version number of the last received response. 
uint32_t aws_iot_shadow_get_last_received_version(void); 

 

aws_iot_shadow_enable_discard_old_delta_msgs() 

This API enables the ignoring of delta messages with old version number. 

As the MQTT is as protocol layer, there could be more than 1 of the same messages if we use QoS 0. To avoid 

getting called for the same message, this functionality should be enabled. If enabled, all the old messages will 

be ignored. 
void aws_iot_shadow_enable_discard_old_delta_msgs(void); 

 

aws_iot_shadow_disable_discard_old_delta_msgs() 

This API disables the ignoring of delta messages with old version number. 
void aws_iot_shadow_disable_discard_old_delta_msgs(void); 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 19 

 

aws_iot_shadow_set_autoreconnect_status() 

This API is the used to enable or disable autoreconnect feature. Any time a disconnect happens the 

underlying MQTT client attempts to reconnect if this is set to true. 

Parameter pClient is MQTT Client used as the protocol layer, newStatus holds the value to set the 

autoreconnect option to. 

Returns an IoT Error Type defining successful/failed operation. 
IoT_Error_t aws_iot_shadow_set_autoreconnect_status(AWS_IoT_Client *pClient, bool 

newStatus); 

 

aws_iot_shadow_disconnect() 

This API is used to disconnect from the AWS IoT Thing Shadow service over MQTT. This closes the underlying 

TCP connection. 

Parameter pClient is MQTT Client used as the protocol layer. 

Returns an IoT Error Type defining successful/failed disconnect status. 
IoT_Error_t aws_iot_shadow_disconnect(AWS_IoT_Client *pClient); 

 

aws_iot_shadow_free() 

This API is used to clean shadow client and free up memory that was dynamically allocated for the client. 

Parameter pClient is MQTT Client that was previously created by calling aws_iot_shadow_init(). 

Returns an IoT Error Type defining successful/failed freeing. 
IoT_Error_t aws_iot_shadow_disconnect(AWS_IoT_Client *pClient); 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 20 

 

aws_iot_shadow_init_json_document() 

This API initializes the JSON document with Shadow expected name/value and fills the JSON Buffer with a null 

terminated string. This function should always be used First, before using iot_shadow_add_reported() 

and/or iot_shadow_add_desired(), and finally iot_finalize_json_document() is called. 

The caller of the API needs to ensure the size of the buffer is enough to hold the entire JSON document. 

Parameter pJsonDocument is the JSON document filled in this char buffer, maxSizeOfJsonDocument is 

maximum size of the pJsonDocument that can be used to fill the JSON document. 

Returns an IoT Error Type defining if the buffer was null or the entire string was not filled up. 

Note: The JSON library used for this SDK is JSMN which does not use any dynamic memory allocation. 
IoT_Error_t aws_iot_shadow_init_json_document(char *pJsonDocument, size_t 

maxSizeOfJsonDocument); 

 

structure jsonStruct_t 

After the initialization of the JSON document, APIs iot_shadow_add_reported() and/or 

iot_shadow_add_desired(), are used to fill the JSON document’s reported or desired section with the 

values we want to report/desire. The relevant structure is as follows:  
/** 

 * @brief This is the struct form of a JSON Key value pair 

 */ 

struct jsonStruct { 

 const char *pKey; ///< JSON key 

 void *pData; ///< pointer to the data (JSON value) 

 size_t dataLength; ///< Length (in bytes) of pData 

 JsonPrimitiveType type; ///< type of JSON 

 jsonStructCallback_t cb; ///< callback to be executed on receiving the Key value 

pair 

};  

 

/** 

 * @brief All the JSON object types enum 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 21 

 

 * 

 * JSON number types need to be split into proper integer / floating point data types and 

sizes on embedded platforms. 

 */ 

typedef enum { 

 SHADOW_JSON_INT32, 

 SHADOW_JSON_INT16, 

 SHADOW_JSON_INT8, 

 SHADOW_JSON_UINT32, 

 SHADOW_JSON_UINT16, 

 SHADOW_JSON_UINT8, 

 SHADOW_JSON_FLOAT, 

 SHADOW_JSON_DOUBLE, 

 SHADOW_JSON_BOOL, 

 SHADOW_JSON_STRING, 

 SHADOW_JSON_OBJECT 

} JsonPrimitiveType; 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 22 

 

aws_iot_shadow_add_reported() 

This API is used to Add the reported section of the JSON document of jsonStruct_t. 

It API takes variable number of arguments; count is the number of jsonStruct_t types that you would like to 

add in the reported section. 

It adds "reported":{<all the values that needs to be added>} to the JSON document. 

The caller of the API needs to ensure the size of the buffer is enough to hold the reported section + the init 

section. The JSON document buffer needs to be initialized using iot_shadow_init_json_document() 

before calling this API. 

Parameter pJsonDocument is the JSON document filled in this char buffer, maxSizeOfJsonDocument is 

maximum size of the pJsonDocument that can be used to fill the JSON document. 

Parameter count is total number of arguments (jsonStruct_t object) passed in the arguments. 

Returns an IoT Error Type defining if the buffer was null or the entire string was not filled up. 
IoT_Error_t aws_iot_shadow_add_reported(char *pJsonDocument, size_t 

maxSizeOfJsonDocument, uint8_t count, ...); 

 

aws_iot_shadow_add_desired() 

This API is used to Add the desired section of the JSON document of jsonStruct_t. 

It API takes variable number of arguments; count is the number of jsonStruct_t types that you would like to 

add in the desired section. 

It adds " desired “: {<all the values that needs to be added>} to the JSON document. 

The caller of the API needs to ensure the size of the buffer is enough to hold the desired section + the init 

section.  The JSON document buffer needs to be initialized using iot_shadow_init_json_document() 

before calling this API. 

Parameter pJsonDocument is the JSON document filled in this char buffer, maxSizeOfJsonDocument is 

maximum size of the pJsonDocument that can be used to fill the JSON document. 

Parameter count is total number of arguments (jsonStruct_t object) passed in the arguments. 

Returns an IoT Error Type defining if the buffer was null or the entire string was not filled up. 

Note: Both ‘desired’ and ‘reported’ section are not mandatory. Most devices might just use the reported section. 
IoT_Error_t aws_iot_shadow_add_desired(char *pJsonDocument, size_t 

maxSizeOfJsonDocument, uint8_t count, ...); 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 23 

 

aws_iot_finalize_json_document() 

This API is used to finalize the JSON document with Shadow expected client Token and increments the client 

token every time this API is called. 

The caller of the API needs to ensure the size of the buffer is enough to hold the entire JSON document. 

This API is to be called after using iot_shadow_add_reported() and/or iot_shadow_add_desired(), 

otherwise the JSON document after ADD operation will not be valid. 

Parameter pJsonDocument is the JSON document filled in this char buffer, maxSizeOfJsonDocument is 

maximum size of the pJsonDocument that can be used to fill the JSON document. 

Returns an IoT Error Type defining if the buffer was null or the entire string was not filled up. 
IoT_Error_t aws_iot_finalize_json_document(char *pJsonDocument, size_t 

maxSizeOfJsonDocument); 

 

When action Update is called after finalize, there could a situation of multiple other services trying to update the 

same shadow. To differentiate the services / device in such situation, a client token string is included to the 

request. 

AWS_IOT_MQTT_CLIENT_ID with a sequence number to differentiate between our own previous update 

requests is used as a client token. It is of the form: "clientToken": "UniqueClientID+Seq". This is also taken care 

by aws_iot_finalize_json_document() APIs.  

 

aws_iot_fill_with_client_token() 

This API fills the given buffer with client token for tracking the Response. 

It adds the AWS_IOT_MQTT_CLIENT_ID with a sequence number. Every time this function is used the 

sequence number gets incremented. 

Parameter pBufferToBeUpdatedWithClientToken is the buffer to be updated with the client token string, 

maxSizeOfJsonDocument is maximum size of the pJsonDocument that can be used to fill the JSON 

document. 

Returns an IoT Error Type defining if the buffer was null or the entire string was not filled up. 
IoT_Error_t aws_iot_fill_with_client_token(char *pBufferToBeUpdatedWithClientToken, 

size_t maxSizeOfJsonDocument); 

 

 

 

  

http://aws-iot-device-sdk-embedded-c-docs.s3-website-us-east-1.amazonaws.com/aws__iot__shadow__json__data_8h.html#acc1c9fe2e514d9b46d659ad4161d0a54


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 24 

 

Auto Reconnect Feature 

If Auto Reconnect feature is enabled using API: aws_iot_shadow_set_autoreconnect_status(), an 

attempt to reconnect is made as part of the next yield call at any time, a disconnect happens. On reconnecting 

the MQTT connection, all the topics will be re-subscribed. 

The auto-reconnect feature could be enabled at any point of time after the aws_iot_shadow_connect() is a 

success. It should not be enabled before aws_iot_shadow_connect(). To verify if this feature is enabled or 

disabled, an underlying MQTT API aws_iot_is_autoreconnect_enabled() is used. 

Exponential back-off is used to decide the time between two reconnect attempts. 

There are two configuration parameters associated with exponential back-off: 

1. AWS_IOT_MQTT_MIN_RECONNECT_WAIT_INTERVAL 

2. AWS_IOT_MQTT_MAX_RECONNECT_WAIT_INTERVAL 

Interval before every next try is multiplied by 2, starting with 

AWS_IOT_MQTT_MIN_RECONNECT_WAIT_INTERVAL. 

After all the reconnect attempts fail based on the maximum back-off time, an attempt will be made every 

AWS_IOT_MQTT_MAX_RECONNECT_WAIT_INTERVAL. 

In the following cases a network disconnect is detected: 

1. As part of MQTT Keepalive functionality, if the Ping Response is not received back, then a disconnect 

is initiated and iot_disconnect_handler() is called. 

2. If we are unable to send the Ping in the first place, then it is flagged as a disconnect. 

Any time a disconnect is detected because of the keep alive logic then this disconnect handler is invoked. The 

iot_disconnect_handler() is invoked even if the auto-reconnect feature is enabled. It is invoked only once 

before the beginning of the reconnection attempt. 

When auto-reconnect is attempted, API iot_tls_is_connected() is called to check if the Physical Network 

is up and whether the TLS layer is connected or not. Every time before performing a TLS handshake, the return 

value of this function will be checked. 

Yield return values could be one of these while using the reconnect feature: 

1. NETWORK_RECONNECTED 

2. NETWORK_ATTEMPTING_RECONNECT 

3. NETWORK_RECONNECT_TIMED_OUT 

4. NETWORK_DISCONNECTED 

Note: If the AWS IoT Embedded C Device SDK library is built with configuration network reconnect timeout 

enabled (#define AWS_IOT_MQTT_DISABLE_NETWORK_RECONNECT_TIME_OUT 0), then auto reconnect behavior 

changes as detailed below.  

After all reconnect attempt failure based on the maximum back-off time, NETWORK_RECONNECT_TIMED_OUT 

is returned by aws_iot_mqtt_yield(). There will be no longer reconnect attempts. If a reconnect is needed 

after this based on some external conditions then use aws_iot_mqtt_attempt_reconnect() API to 

reconnect and re-subscribe. This API could be manually used without turning on the auto-reconnect feature. It 

will attempt to reconnect only once. aws_iot_mqtt_attempt_reconnect() is a blocking call.  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 25 

 

About Alexa Smart Home Skill 

‘Alexa Skills Kit’ can be used by the Customer to develop various Alexa controlled devices with different use 

cases. 

In this application note demo, Alexa Smart Home Skill is used where voice interaction model is prebuilt and 

Smart Home Devices can be discovered and controlled using Amazon Alexa Smartphone App user interface. 

https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html 

Smart Home Skill also provide various APIs with predefined protocols as interface for different types of Smart 

Home Devices, For example: thermostat, temperature sensor, color controller and so on.   

Similarly, there is Smart Home Security Skills with predefined voice interaction models and predefined protocols 

covering doorbell and lock control etc., use cases. 

https://developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-home-security.html 

There are around 25 predefined interfaces in Smart Home category, for which this sample code can be easily 

extended.  

This application note demo skill uses PowerController interface and PowerState in the device shadow is 

updated based on Alexa commands from Alexa Voice Service.  

https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-powercontroller.html 

This is achieved by Alexa Smart Home Skill bridging between Alexa Voice Service (AVS) and AWS IoT Core 

service where the device endpoint resides. This shadow is replicated by the Talaria TWO running the example 

code with this application note. 

To achieve this, customers will need to develop and deploy their own Alexa Skill. 

A demo of this can be seen in action using ‘InnoPhase Smart Home Demo’ Alexa Skill and a device endpoint 

‘InnoSwitch’ residing at InnoPhase AWS Endpoint Cloud. Talaria TWO EVB is used to connect to this device 

endpoint ‘InnoSwitch’ and be controlled by Alexa commands or Amazon Alexa Smartphone App. Next section 

describes how to setup this demo. 

Custom Alexa Skills with customer’s own voice interaction models can also be built with your own protocol over 

AWS IoT Core Device Shadow Service.  

https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/overview-smart-home-security.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-powercontroller.html


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 26 

 

Setting up a Talaria TWO InnoSwitch Demo  

The following section describes the steps needed to successfully setup the Alexa Ready Talaria TWO App with 

InnoPhase Smart Home Demo Alexa Skill.   

Following steps are a one-time process for the individual using the skill to link the account and receive unique 

device name, device cert and device key or Talaria TWO ELF binary. 

 

 Prerequisite 

The User should already have an active Amazon account and an Alexa Application in User’s Smart Phone. 

Optionally, an Alexa enabled speaker like Echo can be used for voice interaction. Talaria TWO EVB and Talaria 

TWO Download Tool will be needed to program the board. 

 

Enable InnoPhase Smart Home Demo Alexa Skill 

LWA (Login with Amazon) service from Amazon is used for securely linking the Alexa account to the Skill. There 

are two methods to enable Skill for your amazon account which are as follows:  

 

Method 1 - Enabling Via Browser 

Login to amazon.com with the amazon account you want to link with the skill, and search for innophase 

alexa skill as shown in Figure 2. 

 
Figure 2: Locating and enabling skill via amazon.com in browser -- 1 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 27 

 

Click the link of the skill and look for Enable. Once enabled from here, this skill will show up in Alexa App logged 

in to same account as well. 

 
Figure 3: Locating and enabling skill via amazon.com in browser -- 2 

 

Method 2 - Enabling Via Amazon Alexa App 

Search for InnoPhase Smart Home Demo from Alexa App Skill Section -> Browse Skills   -> 

Search, locate the skill and tap Enable To Use, as shown in Figure 4. 

 
Figure 4: Locating and enabling skill via Alexa phone app 

 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 28 

 

Linking the Alexa account to the Skill 

Follow the login instructions that appears on subsequent screens and allow the permissions as required as 

described below. 

Clicking enable in previous steps will open a new page (or redirect to next screen) where it asks for an Amazon 

account, as shown in Figure 5. 

 
Figure 5: Amazon account – credentials asked for account linking 

Ensure you use the same account you have used for Alexa app to login.  

Note: If the User has already logged in to the Amazon account in the same browser but in a different tab, then 

the step in Figure 5 might be skipped and you will directly see a prompt as shown in Figure 6. 

Provide permission for accessing email address and name by the Skill.  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 29 

 

 
Figure 6: Permissions asked to access profile for Account Linking 

Note: This permission is asked only for the first time of account linking. Disabling the Skill and enabling it again 

with account linking later might not pop-up a prompt looking exactly as shown in this figure. Instead, the user 

might see a variant of this prompt or this prompt might be skipped altogether. 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 30 

 

This will lead to successfully linking your Amazon Account to InnoPhase Smart Home Demo Skill and a 

confirmation screen like Figure 7 would appear. This completes the Alexa skill setup in your Amazon account. 

 
Figure 7: Amazon Alexa Account Successfully linked to the InnoPhase Smart Home Demo Alexa Skill 

 

Request for AWS IoT Thing creation & Certs created for the Thing 

Please communicate the email-id associated with your Amazon Account to cloud-dev@innophaseinc.com with 

the subject line -- ‘Request for T2 Alexa End Point’. 

In response, an email with the certificates, keys created for the thing and a ‘Thing Name’ similar to 

‘INNO_ENDPOINT_ABCD1234’ will be provided. The certificates, keys and ‘Thing Name’ are unique to your 

account. 

There are two ways in which the ELF is made available: 

1. As part of SDK package in the <sdk_directory>/binaries/ eval/Alexa_ready/bin path 

2. In case you do not have the SDK package, the ELF can be sent along with certs and Thing in response 

to the request email for Alexa Ready App. 

Note: Make sure you can login to Alexa Smart Phone App with your Amazon Account. 

  

mailto:cloud-dev@innophaseinc.com


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 31 

 

Programming Applications 

Programming Talaria TWO board with certificates  

Program the ELFs, certificate and key onto Talaria TWO using the Download tool.  

Launch the Download tool provided with InnoPhase Talaria TWO SDK: (sdk_2.4\pc_tools\Download_Tool\bin). 

 

Show File System Contents 

Click on Show File System Contents to see the current available files in the file system.   

 
Figure 8: Download Tool - Show File System Contents 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 32 

 

Writing Files into File System 

The user needs to add three files in file system: 

1. aws_device_cert 

2. aws_root_ca 

3. aws_device_pkey 

User should rename certificates and key received in the mail with the above provided name. 

For example: 5497cf0b16-private.pem.key must be renamed to aws_device_pkey. 

To write files into Talaria TWO, user must create a folder with the name data and must create a sub folder 

(/data/certs/aws/alexa_ready) which is the default sub-folder used and place all certificates, keys into it. 

Using the Download tool, files must be written to file system.  

 
Figure 9: Write certificates to Talaria TWO  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 33 

 

Programming Talaria TWO board with ELF 

There are two Talaria TWO applications available in the following location of the SDK release package: 

sdk_x.y\binaries\eval\alexa_ready\bin. 

1. innoswitch.elf 

2. innoswitch_ble_provisionig.elf 

 

Note: x and y in sdk_x.y refer to the SDK release version. For example: sdk_2.4\binaries\eval\alexa_ready\bin. 

The difference amongst the two is, while using innoswitch_ble_provisioning.elf , the AP details (SSID, 

Passphrase) can be provisioned to the Talaria TWO application from a mobile application instead of passing it 

from Download Tool.  

 

Programming Talaria TWO board with innoswitch.elf  

Program innoswitch.elf (sdk_x.y\examples\watchdog_timer\bin) using the Download tool: 

1. Launch the Download tool provided with InnoPhase Talaria TWO SDK.  

2. In the GUI window: 

a. Boot Target: Select the appropriate EVK from the drop-down. 

b. ELF Input: Load the innoswitch.elf by clicking on Select ELF File.  

c. AP Options: Provide the appropriate SSID and Passphrase to connect to an Access Point.  

d. Boot Arguments: Pass the following boot arguments: 
aws_host=a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com, 

aws_port=8883,suspend=1,no_mcast=< 1 or 0,thing_name=INNO_ENDPOINT_xxxxxxxx 

Note: Replace the xxxxxx with the appropriate details.  

Ensure correct boot parameters are supplied to your Wi-Fi network and the information from the 

device/thing created previously on AWS. 

a. aws_host is the custom AWS location. 

b. thing_name unique Thing name you received. 

 

e. Programming: Prog RAM or Prog Flash as per requirement.  

 

For more details on using the Download tool, refer to the document: UG_Download_Tool.pdf (path: 

sdk_x.y\pc_tools\Download_Tool\doc). 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 34 

 

Console log after programming:  
Y-BOOT 208ef13 2019-07-22 12:26:54 -0500 790da1-b-7 

ROM yoda-h0-rom-16-0-gd5a8e586 

FLASH:PNWWWWWAEBuild $Id: git-b664be2af $ 

aws_host=a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com aws_port=8883 suspend=1 

no_mcast=< 1 thing_name=INNO_ENDPOINT_6GBTSRZ8 np_conf_path=/sys/nprofile.json 

ssid=InnoPhase passphrase=43083191 

$App:git-38ca4ab7 

SDK Ver: SDK_2.4 

Innoswitch Demo App 

Mounting file system 

read_certs() success 

addr e0:69:3a:00:2c:3e 

added network profile successfully, will try connecting.. 

[2.769,774] CONNECT:d2:01:2a:d2:4a:2d Channel:11 rssi:-24 dBm 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_LINK_UP 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_ADDRESS 

[4.805,318] MYIP 192.168.224.237 

[4.805,402] IPv6 [fe80::e269:3aff:fe00:2c3e]-link 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_CONNECTED 

Shadow Connect 

 

 Root Done[0]Loading the client cert. and key. size TLSDataParams:2080 

 

 Loading the client cert done.... ret[0] 

 Client pkey loaded[0] 

  . Connecting to a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com/8883... ok 

  . Setting up the SSL/TLS structure...  This certificate has no flags 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 35 

 

  This certificate has no flags 

  This certificate has no flags 

SSL/TLS handshake. DONE ..ret:0 

 ok 

    [ Protocol is TLSv1.2 ] 

    [ Ciphersuite is TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256 ] 

    [ Record expansion is 29 ] 

. Verifying peer X.509 certificate... 

 ok 

Shadow Connected 

init_and_connect_aws_iot. ret:0 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-0"} 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-1"} 

Update Accepted !! 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-2"} 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 36 

 

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-3"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-4"} 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-5"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-6"} 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-7"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-8"} 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 37 

 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-9"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-10"} 

Update Accepted !! 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 38 

 

Programming Talaria TWO board with innoswitch_ble_provisioning.elf  

Write the part.json file to the data folder using Write Files in the Download Tool. Once done, program 

innoswitch_with_bleProvisioning.elf (refer steps from section: Programming Talaria TWO board with 

innoswitch.elf to  program the ELF onto Talaria TWO).  

 
Figure 10: Writing part.json 

Note:  

1. To reprovision the Talaria TWO module, write the part.json file onto Talaria TWO filesystem using 

Write Files. 

2. For connecting the Talaria TWO to an AP, the SSID and Passphrase are provisioned to Talaria TWO 

through BLE from a mobile application as mentioned in the following section (section: Using InnoPhase 

Talaria TWO Smart Home Application). Ensure to keep the SSID and Passphrase fields in the Download 

Tool empty.  

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 39 

 

Using InnoPhase Talaria TWO Smart Home Application 

To test this sample application (innoswitch_ble_provisionig.elf ), the companion Innophase T2 

Smart Home Android application can be used from either an Android or iOS device.  

1. To install, open the provided .apk file (sdk_x.y\apps\ble_provisioning\mobile_app) from the phone 

(Android or iOS). 

Note: x and y in sdk_x.y refer to the SDK release version.  

2. To connect to the Talaria TWO BLE Server, wait for the application to complete the scanning and look 

for Inno_Ble_WiFiProvisioning and click on it. 

 
Figure 11: Android - Scanning for Talaria TWO BLE Server for Wi-Fi Provisioning 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 40 

 

 
Figure 12: iOS - Scanning for Talaria TWO BLE Server for Wi-Fi Provisioning 

Android phone connects as a BLE Client to Talaria TWO device at this stage.  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 41 

 

3. Android application scans for the nearby available Wi-Fi networks and displays them in a list view. 

 
Figure 13: Android - Available Wi-Fi networks as scanned by Android Phone 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 42 

 

 
Figure 14: iOS - Available Wi-Fi networks as scanned by Android Phone 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 43 

 

4. Select the SSID of the AP you want to connect to. A passphrase needs to be provided for the SSID.  

 
Figure 15: Android - Providing the passphrase 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 44 

 

 
Figure 16: iOS - Providing the passphrase 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 45 

 

5. Once the passphrase is entered, click on Done. If the provided passphrase is correct, connection is 

established successfully. If not, an error message is shown. 

 
Figure 17: Android - Connecting successful 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 46 

 

 
Figure 18: iOS - Connecting successful 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 47 

 

 
Figure 19: Android - Error in connection 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 48 

 

 
Figure 20: iOS - Error in connection 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 49 

 

6. On establishing the connection successfully, the android application should transfer the Wi-Fi 

credentials using custom GATT Service and Characteristics we created.  

 
Figure 21: Android - Connection successful 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 50 

 

 
Figure 22: iOS - Connection successful 

 

Talaria TWO will try to connect to the provisioned network and provide the following console output: 
UART:SNWWWWWAEBuild $Id: git-65f6c1f46 $ 

aws_host=a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com aws_port=8883 suspend=1 

no_mcast=< 1 thing_name=INNO_ENDPOINT_6GBTSRZ8 

Inno_Ble_WiFiProvisioning started 

[63.146,804] BT connect[0]: ia:60:4d:89:ec:f3:51 aa:05:04:03:02:01:00 phy2:0/0 phyC:00 

Client connected 

client reading status:waiting 

 

 

WiFi Details  SSID: InnoPhase, PASSWORD: 43083191 

 

addr e0:69:3a:00:13:90 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 51 

 

client reading status:waiting 

client reading status:waiting 

Connecting to WiFi... 

added network successfully, will try connecting.. 

connecting to network status: 0 

 

 connection attempt timer started. current timein microseconds:[66337388]  

[66.879,059] CONNECT:00:5f:67:cd:c5:a6 Channel:6 rssi:-32 dBm 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_LINK_UP 

client reading status:waiting 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_ADDRESS 

[67.638,187] MYIP 192.168.0.104 

[67.638,466] IPv6 [fe80::e269:3aff:fe00:1390]-link 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_CONNECTED 

 

 Cancelling the connection timeout timer. current timein microseconds:[67639064]  

client reading status : success 

status sent to phone app, now calling common_server_destroy and bt_gap_destroy  

$App:git-cd11dc34 

SDK Ver: SDK_2.4 

Innoswitch Demo App 

Mounting file system 

read_certs() success 

Shadow Connect 

 

 Root Done[0]Loading the client cert. and key. size TLSDataParams:2080 

 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 52 

 

 Loading the client cert done.... ret[0] 

 Client pkey loaded[0] 

  . Connecting to a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com/8883... ok 

  . Setting up the SSL/TLS structure...  This certificate has no flags 

  This certificate has no flags 

  This certificate has no flags 

SSL/TLS handshake. DONE ..ret:0 

 ok 

    [ Protocol is TLSv1.2 ] 

    [ Ciphersuite is TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256 ] 

    [ Record expansion is 29 ] 

. Verifying peer X.509 certificate... 

 ok 

Shadow Connected 

init_and_connect_aws_iot. ret:0 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-0"} 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-1"} 

Update Accepted !! 

Update Accepted !! 

 

 

 

 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 53 

 

 

 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 54 

 

Jumper Setting in Talaria TWO EVB 

This example uses GPIO 14 to toggle the LED D1. Ensure jumper J3 is installed which connects GPIO14 and 

LED. 

 

Interacting the Talaria TWO EVB with Alexa 

Inno Switch can be controlled either using Amazon’s Alexa App installed in Android Phone or iOS Phone, or 

using the Alexa Voice Interactions with the Alexa speaker which is linked with User’s Alexa account. 

For testing with a Phone, go to the Devices -> Switches and refresh the page if the Inno Switch is not found 

here. 

 
Figure 23: Devices – Switches -- InnoSwitch 

Tap on Inno Switch to find power on/off control. The switch can be controlled from here by tapping on the 

Power Button, and the results will be reflected in LED status and Console of Talaria TWO EVB. 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 55 

 

 
Figure 24: InnoSwitch power on-off control 

Optionally, for controlling the device with Voice Interaction, you will need an Alexa enabled speaker (e.g., 

Amazon Echo) logged in with same Amazon Account. 

Following voice commands are used to control the switch operation: 

1. Alexa, turn on the Inno Switch 

2. Alexa, turn off the Inno Switch  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 56 

 

Console log while interacting with the device is as follows: 
Y-BOOT 208ef13 2019-07-22 12:26:54 -0500 790da1-b-7 

ROM yoda-h0-rom-16-0-gd5a8e586 

FLASH:PNWWWWWAEBuild $Id: git-b664be2af $ 

aws_host=a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com aws_port=8883 suspend=1 

no_mcast=< 1 thing_name=INNO_ENDPOINT_6GBTSRZ8 

Inno_Ble_WiFiProvisioning started 

[22.113,536] BT connect[0]: ia:7c:36:ff:b4:67:18 aa:05:04:03:02:01:00 phy2:0/0 phyC:00 

Client connected 

client reading status:waiting 

 

 

WiFi Details  SSID:InnoPhase, PASSWORD: 43083191 

 

addr e0:69:3a:00:2c:3e 

client reading status:waiting 

client reading status:waiting 

Connecting to WiFi... 

added network successfully, will try connecting.. 

connecting to network status: 0 

 

 connection attempt timer started. current timein microseconds:[25293138]  

[25.832,396] CONNECT:e8:48:b8:fb:35:70 Channel:6 rssi:-71 dBm 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_LINK_UP 

client reading status:waiting 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_ADDRESS 

[26.705,681] MYIP 192.168.0.116 

[26.705,845] IPv6 [fe80::e269:3aff:fe00:2c3e]-link 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 57 

 

wcm_notify_cb to App Layer - WCM_NOTIFY_MSG_CONNECTED 

 

 Cancelling the connection timeout timer. current timein microseconds:[26706029]  

client reading status : success 

status sent to phone app, now calling common_server_destroy and bt_gap_destroy  

$App:git-38ca4ab7 

SDK Ver: SDK_2.4 

Innoswitch Demo App 

Mounting file system 

read_certs() success 

Shadow Connect 

 

 Root Done[0]Loading the client cert. and key. size TLSDataParams:2080 

 

 Loading the client cert done.... ret[0] 

 Client pkey loaded[0] 

  . Connecting to a3t0o11ohwlo2h-ats.iot.us-east-1.amazonaws.com/8883... ok 

  . Setting up the SSL/TLS structure...  This certificate has no flags 

  This certificate has no flags 

  This certificate has no flags 

SSL/TLS handshake. DONE ..ret:0 

 ok 

    [ Protocol is TLSv1.2 ] 

    [ Ciphersuite is TLS-ECDHE-RSA-WITH-AES-128-GCM-SHA256 ] 

    [ Record expansion is 29 ] 

. Verifying peer X.509 certificate... 

 ok 



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 58 

 

Shadow Connected 

init_and_connect_aws_iot. ret:0 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-0"} 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-1"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-2"} 

Update Accepted !! 

Delta - Switch state changed to ON 

LED On  

Update Shadow: {"state":{"reported":{"powerState":"ON"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-3"} 

Update Accepted !! 

Delta - Switch state changed to OFF 

LED Off  

Update Shadow: {"state":{"reported":{"powerState":"OFF"}}, 

"clientToken":"INNO_ENDPOINT_6GBTSRZ8-4"} 

Update Accepted !! 

  



 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 59 

 

Support 

1. Sales Support: Contact an InnoPhase sales representative via email – sales@innophaseiot.com  

2. Technical Support: 

a. Visit: https://innophaseiot.com/contact/ 

b. Also Visit: https://innophaseiot.com/talaria-two-modules/ 

c. Contact: support@innophaseiot.com 

InnoPhase is working diligently to provide customers outstanding support to all customers. 

 

  

mailto:sales@innophaseiot.com
https://innophaseiot.com/contact/
https://innophaseiot.com/talaria-two-modules/
mailto:support@innophaseiot.com


 

Alexa Ready Application  

 

Version 3.0 Copyright © 2023 InnoPhase IoT, Inc. | All Rights Reserved | Proprietary 60 

 

Disclaimers 

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, 

InnoPhase IoT Incorporated does not give any representations or warranties, expressed or implied, as to the 

accuracy or completeness of such information and assumes no liability associated with the use of such 

information. InnoPhase IoT Incorporated takes no responsibility for the content in this document if provided by 

an information source outside of InnoPhase IoT Incorporated. 

InnoPhase IoT Incorporated disclaims liability for any indirect, incidental, punitive, special or consequential 

damages associated with the use of this document, applications and any products associated with information 

in this document, whether or not such damages are based on tort (including negligence), warranty, including 

warranty of merchantability, warranty of fitness for a particular purpose, breach of contract or any other legal 

theory. Further, InnoPhase IoT Incorporated accepts no liability and makes no warranty, express or implied, for 

any assistance given with respect to any applications described herein or customer product design, or the 

application or use by any customer’s third-party customer(s). 

Notwithstanding any damages that a customer might incur for any reason whatsoever, InnoPhase IoT 

Incorporated’ aggregate and cumulative liability for the products described herein shall be limited in accordance 

with the Terms and Conditions of identified in the commercial sale documentation for such InnoPhase IoT 

Incorporated products. 

Right to make changes — InnoPhase IoT Incorporated reserves the right to make changes to information 

published in this document, including, without limitation, changes to any specifications and product descriptions, 

at any time and without notice. This document supersedes and replaces all information supplied prior to the 

publication hereof. 

Suitability for use — InnoPhase IoT Incorporated products are not designed, authorized or warranted to be 

suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure 

or malfunction of an InnoPhase IoT Incorporated product can reasonably be expected to result in personal injury, 

death or severe property or environmental damage. InnoPhase IoT Incorporated and its suppliers accept no 

liability for inclusion and/or use of InnoPhase IoT Incorporated products in such equipment or applications and 

such inclusion and/or use is at the customer’s own risk. 

All trademarks, trade names and registered trademarks mentioned in this document are property of their 

respective owners and are hereby acknowledged. 

 


